Bathymetric Modelling of High Mountain Tropical Lakes of Southern Ecuador

Author:

Vázquez Raúl F.12ORCID,Mosquera Pablo V.34ORCID,Hampel Henrietta15ORCID

Affiliation:

1. Laboratorio de Ecología Acuática (LEA), Facultad de Ciencias Químicas, Universidad de Cuenca, Av. 12 de abril S/N, Cuenca 010203, Ecuador

2. Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Cuenca, Av. 12 de abril S/N, Cuenca 010203, Ecuador

3. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain

4. Subgerencia de Gestión Ambiental de la Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento (ETAPA EP), Cuenca 010101, Ecuador

5. Facultad de Ciencias Químicas, Universidad de Cuenca, Av. 12 de abril S/N, Cuenca 010203, Ecuador

Abstract

Very little is known on high mountain tropical lakes of South America. Thus, the main motivation of this research was obtaining base bathymetric data of 119 tropical lakes of the Cajas National Park (CNP), Ecuador, that could be used in future geomorphological studies. Eleven interpolation methods were applied with the intention of selecting the best one for processing the scattered observations that were collected with a low-cost fishing echo-sounder. A split-sample (SS) test was used and repeated several times considering different proportions of available observations, selected randomly, for training of the interpolation methods and accuracy evaluation of the respective products. This accuracy was assessed through the use of empirical exceedance probability distributions of the mean absolute error (MAE). A single best interpolation method could not be identified. Instead, the study suggested six better-performing methods, including the complex methods Kriging (ordinary), minimum curvature (spline), multiquadric, and TIN with linear interpolation but also the much simpler methods natural neighbour and nearest neighbour. A sensitivity analysis (SA), considering several data error magnitudes, confirmed this. This advocated that sophisticated interpolation methods do not always produce the best products as geomorphological characteristics of the study site(s) together with observation data characteristics are likely to play important roles in their performance. As such, this type of assessment should be carried out in any terrestrial mapping of bathymetry that is based on the interpolation of scattered observations. Upon the analysis of the relative hypsometric curves of the 119 study lakes, they were classified into three average form categories: convex, concave, and mixed. The separated accuracy analysis of these three groups of lakes did not help in identifying a single best method. Finally, the interpolated bathymetries of 114 of the study lakes were incorporated into the best DEM of the study site by equalising their elevation reference systems. It is believed that the resulting enhanced DEM could be a very useful tool for a more appropriate management of these very beautiful but fragile high mountain tropical lakes.

Funder

University of Cuenca

Municipal Public Enterprise of Telecommunications, Drinking Water, Sewage and Sanitation of Cuenca

Vice-presidency of Research of the University of Cuenca

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3