Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI

Author:

Cho Jeong HoonORCID,Ryoo Sang-Boom,Kim Jinwon

Abstract

Dust events in Northeast Asia have several adverse effects on human health, agricultural land, infrastructure, and transport. Wind speed is the most important factor in determining the total dust emission at the land surface; however, various land-surface conditions must be considered as well. Recently, the Korea Meteorological Administration updated the dust emission reduction factor (RF) in the Asian Dust Aerosol Model 3 (ADAM3) using data from the normalized difference vegetation index (NDVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS). We evaluated the improvements of ADAM3 according to soil types. We incorporated new RF formulations in the evaluation based on real-time MODIS NDVI data obtained over the Asian dust source regions in northern China during spring 2017. This incorporation improved the simulation performance of ADAM3 for the PM10 mass concentration in Inner Mongolia and Manchuria for all soil types, except Gobi. The ADAM3 skill scores for sand, loess, and mixed types in a 24 h forecast increased by 6.6%, 20.4%, and 13.3%, respectively, compared with those in forecasts employing the monthly RF based on the NDVI data. As surface conditions in the dust source regions continually change, incorporating real-time vegetation data is critical to improving performance of dust forecast models such as ADAM3.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Asian Dust Aerosol Model 3 Based on an Asian Dust Case of December 2022;Journal of Korean Society for Atmospheric Environment;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3