Retrieving Crop Albedo Based on Radar Sentinel-1 and Random Forest Approach

Author:

Amazirh AbdelhakimORCID,Bouras El HoussaineORCID,Olivera-Guerra Luis Enrique,Er-Raki SalahORCID,Chehbouni AbdelghaniORCID

Abstract

Monitoring agricultural crops is of paramount importance for preserving water resources and increasing water efficiency over semi-arid areas. This can be achieved by modelling the water resources all along the growing season through the coupled water–surface energy balance. Surface albedo is a key land surface variable to constrain the surface radiation budget and hence the coupled water–surface energy balance. In order to capture the hydric status changes over the growing season, optical remote sensing becomes impractical due to cloud cover in some periods, especially over irrigated winter crops in semi-arid regions. To fill the gap, this paper aims to generate cloudless surface albedo product from Sentinel-1 data that offers a source of high spatio-temporal resolution images. This can help to better capture the vegetation development along the growth season through the surface radiation budget. Random Forest (RF) algorithm was implemented using Sentinel-1 backscatters as input. The approach was tested over an irrigated semi-arid zone in Morocco, which is known by its heterogeneity in term of soil conditions and crop types. The obtained results are evaluated against Landsat-derived albedo with quasi-concurrent Landsat/Sentinel-1 overpasses (up to one day offset), while a further validation was investigated using in situ field scale albedo data. The best model-hyperparameters selection was dependent on two validation approaches (K-fold cross-validation ‘k = 10’, and holdout). The more robust and accurate model parameters are those that represent the best statistical metrics (root mean square error ‘RMSE’, bias and correlation coefficient ‘R’). Coefficient values ranging from 0.70 to 0.79 and a RMSE value between 0.0002 and 0.00048 were obtained comparing Landsat and predicted albedo by RF method. The relative error ratio equals 4.5, which is acceptable to predict surface albedo.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3