Effects of Corrosion on Compressive Arch Action and Catenary Action of RC Frames to Resist Progressive Collapse Based on Numerical Analysis

Author:

Zhang Lu,Wei Tingyu,Li Hongyu,Zeng Jian,Deng Xiaofang

Abstract

Many negative factors can influence the progressive collapse resistance of reinforced concrete (RC) frame structures. One of the most important factors is the corrosion of rebar within the structure. With increasing severity of corrosion, the duration, robustness, and mechanical performance can be greatly impaired. One specific side effect of rebar corrosion is the significant loss of protection against progressive collapse. In order to quantify the effects of rebar corrosion on load-resisting mechanisms (compressive arch action (CAA) and tensile catenary action (TCA)) of RC frames, a series of numerical investigations were carried out in this paper. The previous experimental results reported in the literature provide a benchmark for progressive collapse behavior as a sound condition and validate the proposed numerical model. Furthermore, based on the verified numerical model, the CAA and TCA with increasing corrosion and an elapsed time from 0 to 70 years are investigated. Comparing with the conventional empirical model, the proposed numerical model has shown the ability and feasibility in predicting the collapse resistance capacity in structures with corroded rebar. Therefore, this numerical modeling strategy provides comprehensive insights into the change of load-resisting mechanisms in these structures, which can be beneficial for optimizing the design.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Special Fund for Talents Program

Key Laboratory of Intelligent Perception and Advanced Control of State Ethnic Affairs Commission

Publisher

MDPI AG

Subject

General Materials Science

Reference57 articles.

1. Mechanics of Progressive Collapse: Learning from World Trade Center and Building Demolitions

2. Lessons from the Sampoong department store collapse

3. Dynamic Response of a RC Frame under Column Removal

4. Experimental Evaluation of Disproportionate Collapse Resistance in Reinforced Concrete Frames;Stinger;ACI Struct. J.,2013

5. Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure;Sasani;ACI Struct. J.,2007

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3