Progressive Collapse Resistance Mechanism of RC Frame Structure Considering Reinforcement Corrosion

Author:

Bao Chao1ORCID,Lv Dahai1,Wang Huxiang1,Zhang Yuhang1,Ma Xiaotong2,Lim Kar Sing3,Zhang Juping1

Affiliation:

1. School of Civil Engineering and Hydraulic Engineering, Ningxia University, Ningxia Hui Autonomous Region, China

2. School of Civil Engineering, North Minzu University, Ningxia Hui Autonomous Region, China

3. Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia

Abstract

Corrosion causes reduction in cross-sectional area of reinforcement, deterioration of mechanical properties, and degradation of bonding properties between reinforced concrete, which are the most important factors leading to the degradation of structural service performance. In order to investigate the progressive collapse mechanism of a corroded reinforced concrete frame structure, the failure modes, characteristics of the vertical displacement, and load capacity are studied using the finite element method. Based on existing experimental research, the established model is verified, and the influence of different influencing factors on the progressive collapse mechanism is analyzed. The results show that the corrosion of the reinforcement affects the yield load, peak load, and ultimate load of the reinforced concrete substructure. As the corrosion rate increases, the tensile arch action shows a particularly severe deterioration. The variation of concrete strength and the height–span ratio affects the substructure’s load-bearing capacity much more significantly than the stirrup spacing.

Funder

Outstanding Young Teachers Training Foundation of Ningxia

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3