End-to-End Sentence-Level Multi-View Lipreading Architecture with Spatial Attention Module Integrated Multiple CNNs and Cascaded Local Self-Attention-CTC

Author:

Jeon SanghunORCID,Kim Mun SangORCID

Abstract

Concomitant with the recent advances in deep learning, automatic speech recognition and visual speech recognition (VSR) have received considerable attention. However, although VSR systems must identify speech from both frontal and profile faces in real-world scenarios, most VSR studies have focused solely on frontal face pictures. To address this issue, we propose an end-to-end sentence-level multi-view VSR architecture for faces captured from four different perspectives (frontal, 30°, 45°, and 60°). The encoder uses multiple convolutional neural networks with a spatial attention module to detect minor changes in the mouth patterns of similarly pronounced words, and the decoder uses cascaded local self-attention connectionist temporal classification to collect the details of local contextual information in the immediate vicinity, which results in a substantial performance boost and speedy convergence. To compare the performance of the proposed model for experiments on the OuluVS2 dataset, the dataset was divided into four different perspectives, and the obtained performance improvement was 3.31% (0°), 4.79% (30°), 5.51% (45°), 6.18% (60°), and 4.95% (mean), respectively, compared with the existing state-of-the-art performance, and the average performance improved by 9.1% compared with the baseline. Thus, the suggested design enhances the performance of multi-view VSR and boosts its usefulness in real-world applications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3