Multimodal audiovisual speech recognition architecture using a three‐feature multi‐fusion method for noise‐robust systems

Author:

Jeon Sanghun12ORCID,Lee Jieun2,Yeo Dohyeon2,Lee Yong‐Ju1,Kim SeungJun2

Affiliation:

1. Electronics and Telecommunications Research Institute Daejeon Republic of Korea

2. Gwangju Institute of Science and Technology School of Integrated Technology Gwangju Republic of Korea

Abstract

AbstractExposure to varied noisy environments impairs the recognition performance of artificial intelligence‐based speech recognition technologies. Degraded‐performance services can be utilized as limited systems that assure good performance in certain environments, but impair the general quality of speech recognition services. This study introduces an audiovisual speech recognition (AVSR) model robust to various noise settings, mimicking human dialogue recognition elements. The model converts word embeddings and log‐Mel spectrograms into feature vectors for audio recognition. A dense spatial–temporal convolutional neural network model extracts features from log‐Mel spectrograms, transformed for visual‐based recognition. This approach exhibits improved aural and visual recognition capabilities. We assess the signal‐to‐noise ratio in nine synthesized noise environments, with the proposed model exhibiting lower average error rates. The error rate for the AVSR model using a three‐feature multi‐fusion method is 1.711%, compared to the general 3.939% rate. This model is applicable in noise‐affected environments owing to its enhanced stability and recognition rate.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3