Failure Identification Using Model-Implemented Fault Injection with Domain Knowledge-Guided Reinforcement Learning

Author:

Moradi Mehrdad12ORCID,Van Acker Bert12ORCID,Denil Joachim12ORCID

Affiliation:

1. ICT-Department of Applied Engineering Faculty, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium

2. Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium

Abstract

The safety assessment of cyber-physical systems (CPSs) requires tremendous effort, as the complexity of cyber-physical systems is increasing. A well-known approach for the safety assessment of CPSs is fault injection (FI). The goal of fault injection is to find a catastrophic fault that can cause the system to fail by injecting faults into it. These catastrophic faults are less likely to occur, and finding them requires tremendous labor and cost. In this study, we propose a reinforcement learning (RL)-based method to automatically configure faults in the system under test and to find catastrophic faults in the early stage of system development at the model level. The proposed method provides a guideline to utilize high-level domain knowledge about a system model for constructing the reinforcement learning agent and fault injection setup. In this study, we used the system (safety) specification to shape the reward function in the reinforcement learning agent. The reinforcement learning agent dynamically interacted with the model under test to identify catastrophic faults. We compared the proposed method with random-based fault injection in two case studies using MATLAB/Simulink. Our proposed method outperformed random-based fault injection in terms of the severity and number of faults found.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3