Modeling Long and Short Term User Preferences by Leveraging Multi-Dimensional Auxiliary Information for Next POI Recommendation

Author:

Li Zheng123,Huang Xueyuan1,Gong Liupeng1,Yuan Ke1ORCID,Liu Chun1

Affiliation:

1. College of Computer and Information Engineering, Henan University, Kaifeng 475004, China

2. Henan Engineering Laboratory of Spatial Information Processing, Henan University, Kaifeng 475004, China

3. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China

Abstract

Next Point-of-Interest (POI) recommendation has shown great value for both users and providers in location-based services. Existing methods mainly rely on partial information in users’ check-in sequences, and are brittle to users with few interactions. Moreover, they ignore the impact of multi-dimensional auxiliary information such as user check-in frequency, POI category on user preferences modeling and the impact of dynamic changes in user preferences over different time periods on recommendation performance. To address the above limitations, we propose a novel method for next POI recommendation by modeling long and short term user preferences with multi-dimensional auxiliary information. In particular, the proposed model includes a static LSTM module to capture users’ multi-dimensional long term static preferences and a dynamic meta-learning module to capture users’ multi-dimensional dynamic preferences. Furthermore, we incorporate a POI category filter into our model to comprehensively simulate users’ preferences. Experimental results on two real-world datasets demonstrate that our model outperforms the state-of-the-art baseline methods in two commonly used evaluation metrics.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Henan Province

Key Scientific Research Project Plan of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3