Abstract
The next point-of-interest (POI) recommendation is one of the most essential applications in location-based social networks (LBSNs). Its main goal is to research the sequential patterns of user check-in activities and then predict a user’s next destination. However, most previous studies have failed to make full use of spatio-temporal information to analyze user check-in periodic regularity, and some studies omit the user’s transition preference for the category at the POI semantic level. These are important for analyzing the user’s preference for check-in behavior. Long- and short-term preference modeling based on multi-level attention (LSMA) is put forward to solve the above problem and enhance the accuracy of the next POI recommendation. This can capture the user’s long-term and short-term preferences separately, and consider the multi-faceted utilization of spatio-temporal information. In particular, it can analyze the periodic hobbies contained in the user’s check-in. Moreover, a multi-level attention mechanism is designed to study the multi-factor dynamic representation of user check-in behavior and non-linear dependence between user check-ins, which can multi-angle and comprehensively explore a user’s check-in interest. We also study the user’s category transition preference at a coarse-grained semantic level to help construct the user’s long-term and short-term preferences. Finally, experiments were carried out on two real-world datasets; the findings showed that LSMA modeling outperformed state-of-the-art recommendation systems.
Funder
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献