All-Electrical Control of Compact SOT-MRAM: Toward Highly Efficient and Reliable Non-Volatile In-Memory Computing

Author:

Lin Huai,Luo Xi,Liu Long,Wang Di,Zhao XuefengORCID,Wang Ziwei,Xue Xiaoyong,Zhang Feng,Xing Guozhong

Abstract

Two-dimensional van der Waals (2D vdW) ferromagnets possess outstanding scalability, controllable ferromagnetism, and out-of-plane anisotropy, enabling the compact spintronics-based non-volatile in-memory computing (nv-IMC) that promises to tackle the memory wall bottleneck issue. Here, by employing the intriguing room-temperature ferromagnetic characteristics of emerging 2D Fe3GeTe2 with the dissimilar electronic structure of the two spin-conducting channels, we report on a new type of non-volatile spin-orbit torque (SOT) magnetic tunnel junction (MTJ) device based on Fe3GeTe2/MgO/Fe3GeTe2 heterostructure, which demonstrates the uni-polar and high-speed field-free magnetization switching by adjusting the ratio of field-like torque to damping-like torque coefficient in the free layer. Compared to the conventional 2T1M structure, the developed 3-transistor-2-MTJ (3T2M) cell is implemented with the complementary data storage feature and the enhanced sensing margin of 201.4% (from 271.7 mV to 547.2 mV) and 276% (from 188.2 mV to 520 mV) for reading “1” and “0”, respectively. Moreover, superior to the traditional CoFeB-based MTJ memory cell counterpart, the 3T2M crossbar array architecture can be executed for AND/NAND, OR/NOR Boolean logic operation with a fast latency of 24 ps and ultra-low power consumption of 2.47 fJ/bit. Such device to architecture design with elaborated micro-magnetic and circuit-level simulation results shows great potential for realizing high-performance 2D material-based compact SOT magnetic random-access memory, facilitating new applications of highly reliable and energy-efficient nv-IMC.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3