Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning

Author:

Staffini AlessioORCID,Svensson ThomasORCID,Chung Ung-ilORCID,Svensson Akiko KishiORCID

Abstract

Physiological time series are affected by many factors, making them highly nonlinear and nonstationary. As a consequence, heart rate time series are often considered difficult to predict and handle. However, heart rate behavior can indicate underlying cardiovascular and respiratory diseases as well as mood disorders. Given the importance of accurate modeling and reliable predictions of heart rate fluctuations for the prevention and control of certain diseases, it is paramount to identify models with the best performance in such tasks. The objectives of this study were to compare the results of three different forecasting models (Autoregressive Model, Long Short-Term Memory Network, and Convolutional Long Short-Term Memory Network) trained and tested on heart rate beats per minute data obtained from twelve heterogeneous participants and to identify the architecture with the best performance in terms of modeling and forecasting heart rate behavior. Heart rate beats per minute data were collected using a wearable device over a period of 10 days from twelve different participants who were heterogeneous in age, sex, medical history, and lifestyle behaviors. The goodness of the results produced by the models was measured using both the mean absolute error and the root mean square error as error metrics. Despite the three models showing similar performance, the Autoregressive Model gave the best results in all settings examined. For example, considering one of the participants, the Autoregressive Model gave a mean absolute error of 2.069 (compared to 2.173 of the Long Short-Term Memory Network and 2.138 of the Convolutional Long Short-Term Memory Network), achieving an improvement of 5.027% and 3.335%, respectively. Similar results can be observed for the other participants. The findings of the study suggest that regardless of an individual’s age, sex, and lifestyle behaviors, their heart rate largely depends on the pattern observed in the previous few minutes, suggesting that heart rate can be reasonably regarded as an autoregressive process. The findings also suggest that minute-by-minute heart rate prediction can be accurately performed using a linear model, at least in individuals without pathologies that cause heartbeat irregularities. The findings also suggest many possible applications for the Autoregressive Model, in principle in any context where minute-by-minute heart rate prediction is required (arrhythmia detection and analysis of the response to training, among others).

Funder

Japan Science and Technology Agency

Kanagawa Prefecture's "Project to expand the use of metabolic syndrome risk index in municipalities"

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3