Modelling Petrol Prices in Kenya from 2014 to 2023 Using Sarimax Model: A Case Study of Nairobi County

Author:

Nyamai Fidelis1,Esekon Joseph1,Atitwa Edwine2

Affiliation:

1. Pure and Applied Sciences, Kirinyaga University, Kerugoya, Kenya

2. Pure and Applied Sciences, University of Embu, Embu, Kenya

Abstract

The requirement for petrol price information is crucial for majority of enterprises. This is because fluctuations in petrol prices impact inflation hence affecting daily lives of citizens. In analyzing the prices of petrol, researchers have employed several models but encountered various limitations. These limitations include; the Error Correction Model can examine only one co-integrating association. The Vector Autoregression (VAR) model does not account for the structural changes in the data. Additionally, the AutoRegressive Integrated Moving Average (ARIMA) model does not take into consideration the seasonal component in the data. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model assumes that over time the volatility is constant. Moreover, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model does not integrate the external factors. Hence in this study Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) model was employed since it captures seasonality in data and incorporates the exogenous variables. The research’s aim was to model prices of petrol in Kenya for the period between 2014 to 2023 with exchange rates as an external factor. Secondary data was obtained from Energy and Petroleum Regulatory Authority (EPRA), Kenya National Bureau of Statistics (KNBS) and Central Bank of Kenya (CBK) websites. R software was used to analyze the data. By the use of historical data of petrol prices and exchange rates, the study sought to fit the best Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) model, validate the model and predict the petrol prices. The petrol price data was found to be non-stationary using Augmented Dickey Fuller test (ADF). Regular differencing was conducted to make the data stationary. Seasonal differencing due to seasonality component available in the data was also performed. Best SARIMAX model was chosen from various SARIMAX models according to Box-Jenkins methodology which uses least Akaike Information Criterion (AIC) value. SARIMAX (0,1,1)(2,1,2)<sub>12</sub> model was selected since it had least Akaike Information Criterion (AIC) value of 656.3733 and the model validated using the hold out technique. The forecasts errors from the training set were; Mean Squared Error (MSE)=10.4970, Root Mean Square Error (RMSE)=3.239911, Mean Absolute Percentage Error (MAPE)=2.309268% while those from the testing set were; Mean Squared Error (MSE)=3271.1012, Root Mean Square Error (RMSE)=57.193542, Mean Absolute Percentage Error (MAPE)=26.695390%. There was less error in the training set than in the testing set as it was expected hence the model suited the data well and could be used for future predictions. The model was then used for five year forecast into the future. This study’s findings will offer sound suggestions to policymakers, businesses and consumers. This study recommends a model to be fitted using other factors affecting petrol prices and fitting Fourier terms, Behavioral Assessment Tools (BATS) and Trigonometric Box-Cox ARMA Trend Seasonal (TBATS) models.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3