A Chip Formation Study of the Micro-Cutting of Commercially Pure Titanium

Author:

Assis João Octávio Marçal1,Lauro Carlos Henrique12ORCID,Pereira Robson Bruno Dutra1ORCID,Brandão Lincoln Cardoso1ORCID,Arruda Étory Madrilles1,Davim João Paulo2ORCID

Affiliation:

1. Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of São João del Rei, Praça Frei Orlando 170, São João del Rei 36307-352, Brazil

2. Department of Mechanical Engineering, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal

Abstract

In recent years, micro-cutting has been employed to obtain components that are more detailed and/or have great surface quality, regardless of dimensions, like dental implants. In the manufacturing of medical/dental components, titanium and its alloys are biomaterials of great notability. Like in conventional machining, sustainability is a delicate issue because it does not only depend on environmental aspects. One simple solution would be to perform dry machining. However, in the machining of difficult-to-cut materials, like titanium and its alloys, the use of cutting fluids is generally recommended to avoid the high temperature causing damage to the tool and/or machined surface. Concerned with the quality surface that is required for dental components, this work investigates the use of cutting fluid in the micro-cutting of commercially pure titanium. Orthogonal micro-cutting experiments were carried out under dry and wet conditions, using cutting fluid at room and cooled temperatures. To evaluate the lubri-cooling performance, cutting efforts, the friction coefficient, specific cutting energy, and chip formation analysis were compared. The outcomes indicated that, under the test conditions, the use of dry cutting and high feed levels had a positive effect on micro-cutting performance.

Funder

State of Minas Gerais Research Foundation

Foundation for Science and Technology (FCT) from Portugal

FAMASI—Sustainable and Intelligent Manufacturing by Machining

FCT/POCI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3