Initial Period of Chip Formation: Observations Towards Enhancing Machining Sustainability

Author:

Alammari Y.,Saelzer J.,Berger S.,Iovkov I.,Biermann D.

Abstract

AbstractIn machining, high mechanical and thermal loads are exerted on a small area of the tool where it interacts with the workpiece. Despite limited interaction space, extensive use of cutting fluids (CFs) is inefficiently used to improve the machining process and increase productivity. In order to minimize CFs’ negative impact on health, environment and financial burden, various strategies have been developed and studied to optimize their use including minimum quantity lubrication. In this research, initial period of chip formation (IPCF), that occurs during a narrow window of space and time at the beginning of the cut, is closely investigated in an orthogonal machining setup. During IPCF, low mechanical loads were observed. The existence of IPCF is further investigated under interrupted cutting process at prescribed intervals in order to sustain its positive effects. In addition, 2D numerical chip formation friction model is proposed. The numerical model comprises a friction criterion dependent on tool temperature that is observed to be associated with a transient friction regime.

Publisher

Springer International Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3