Assessment of the Thermomechanical Behavior and Microstructure of AA 7075-T6 Aluminum Alloy Lap Joints at Optimal Predicted FSW Process Parameters

Author:

Toumi Oumayma1,Khalifa Romdhane Ben1,Silvestri Alessia Teresa2ORCID,Ennetta Ridha1ORCID,Scherillo Fabio2ORCID,Prisco Umberto2ORCID

Affiliation:

1. Mechanical Modelling, Energy & Materials, National School of Engineers, Gabes University, Zrig, Gabes 6029, Tunisia

2. Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy

Abstract

The lap joints of AA 7075-T6 aluminum alloy were assembled using the friction stir welding (FSW) technique. Experimental studies were performed to characterize the thermomechanical properties of these welds. The main goal of this research was to comprehensively assess the thermomechanical behavior of AA 7075-T6 aluminum alloy under FSW conditions. Tests were carried out at a tool rotational speed of 1320 rpm and at two advancing speeds of 70 mm/min and 120 mm/min, selected based on a previous study aiming to optimize the heat input during the FSW process. The experimental investigations involved the characterization of temperature profiles during welding, mechanical properties such as microhardness and tensile strength, and microstructure examination at the two advancing speed conditions. This study revealed that the welding speed has an obvious influence on the material thermal behavior during the FSW process. Indeed, the peak temperature obtained with a lower welding speed (70 mm/min) was higher by almost 10% compared to that obtained with a higher speed (120 mm/min). Moreover, by increasing the welding speed, the mechanical characteristics, such as microhardness and tensile strength, were increased by almost 5% for the mean microhardness and 6% for the ultimate tensile strength. Additionally, the microstructure examination demonstrated that, by decreasing the welding speed, more interaction between the tool and the material is observed, resulting in a deeper stir zone due to increased heat dissipation downwards into the material, affecting the thermal profile and influencing the resulting mechanical properties of the welded joint.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3