Influence of Friction Stir Welding Process on the Mechanical Characteristics of the Hybrid Joints AA2198-T8 to AA2024-T3

Author:

Alemdar Ahmed Samir Anwar1ORCID,Jalal Shawnim R1,Mulapeer Mohammedtaher M Saeed1

Affiliation:

1. Mechanical and Mechatronics Department, College of Engineering, Salahaddin University, Erbil, Iraq

Abstract

The study presents the hybrid joining of the third generation AA2198-T8 aluminum lithium alloy to AA2024-T3 aluminum copper alloy, which has been highly demanded recently in the aerospace industry. This investigation aims to reduce the cost of production in the industrial sector. As a result, an affordable alternative is to use hybrid designs using AA2198-T8 alloy in crucial parts and AA2024-T3 alloy in the rest of the structure. A joining method is required to create hybrid structures composed of last-generation and standard aluminum alloys. The joining process was successfully friction stir-welded using five different welding travel speeds—36, 76, 102, 146, and 216 mm/min—with an invariable spindle speed of 960 rev/min. Two reversed steps, double-sided friction stir welding (DS-FSW) and single-sided friction stir welding (SS-FSW) techniques with two appropriate tool designs, were employed to investigate the dissimilar material mechanical properties and their morphological changes. The experimental outcomes show that DS-FSW of the reversed steps has a higher joining strength than SS-FSW for all the welding parameters studied. The variation in travel speeds provided the highest strength at 102 mm/min travel welding speeds for DS-FSW. Therefore, it is found that, from the three tensile samples, tensile strength, yield strength, and elongation of the joint were 407.1 MPa, 271.2 MPa, and 9.5%, respectively. The joint efficiency reached 87% compared with the base material tensile strength of AA2024-T3. Furthermore, fractures of the tensile samples were found in the vicinity of the thermomechanically affected zone (TMAZ) of the AA2198-T8 side. The microhardness and morphology results correspondingly have precise predictions for the fracture zone of the joints in this research examination.

Funder

Kurdistan Regional Government

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3