LiDAR-as-Camera for End-to-End Driving

Author:

Tampuu Ardi1ORCID,Aidla Romet1,van Gent Jan Aare1,Matiisen Tambet1

Affiliation:

1. Institute of Computer Science, University of Tartu, 51009 Tartu, Estonia

Abstract

The core task of any autonomous driving system is to transform sensory inputs into driving commands. In end-to-end driving, this is achieved via a neural network, with one or multiple cameras as the most commonly used input and low-level driving commands, e.g., steering angle, as output. However, simulation studies have shown that depth-sensing can make the end-to-end driving task easier. On a real car, combining depth and visual information can be challenging due to the difficulty of obtaining good spatial and temporal alignment of the sensors. To alleviate alignment problems, Ouster LiDARs can output surround-view LiDAR images with depth, intensity, and ambient radiation channels. These measurements originate from the same sensor, rendering them perfectly aligned in time and space. The main goal of our study is to investigate how useful such images are as inputs to a self-driving neural network. We demonstrate that such LiDAR images are sufficient for the real-car road-following task. Models using these images as input perform at least as well as camera-based models in the tested conditions. Moreover, LiDAR images are less sensitive to weather conditions and lead to better generalization. In a secondary research direction, we reveal that the temporal smoothness of off-policy prediction sequences correlates with the actual on-policy driving ability equally well as the commonly used mean absolute error.

Funder

Estonian Research Council

Bolt Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3