Enteric Methane Emissions Prediction in Dairy Cattle and Effects of Monensin on Methane Emissions: A Meta-Analysis

Author:

Marumo Joyce L.1ORCID,LaPierre P. Andrew1ORCID,Van Amburgh Michael E.1ORCID

Affiliation:

1. Department of Animal Science, Cornell University, Ithaca, NY 14853, USA

Abstract

Greenhouse gas emissions, such as enteric methane (CH4) from ruminant livestock, have been linked to global warming. Thus, easily applicable CH4 management strategies, including the inclusion of dietary additives, should be in place. The objectives of the current study were to: (i) compile a database of animal records that supplemented monensin and investigate the effect of monensin on CH4 emissions; (ii) identify the principal dietary, animal, and lactation performance input variables that predict enteric CH4 production (g/d) and yield (g/kg of dry matter intake DMI); (iii) develop empirical models that predict CH4 production and yield in dairy cattle; and (iv) evaluate the newly developed models and published models in the literature. A significant reduction in CH4 production and yield of 5.4% and 4.0%, respectively, was found with a monensin supplementation of ≤24 mg/kg DM. However, no robust models were developed from the monensin database because of inadequate observations under the current paper’s inclusion/exclusion criteria. Thus, further long-term in vivo studies of monensin supplementation at ≤24 mg/kg DMI in dairy cattle on CH4 emissions specifically beyond 21 days of feeding are reported to ensure the monensin effects on the enteric CH4 are needed. In order to explore CH4 predictions independent of monensin, additional studies were added to the database. Subsequently, dairy cattle CH4 production prediction models were developed using a database generated from 18 in vivo studies, which included 61 treatment means from the combined data of lactating and non-lactating cows (COM) with a subset of 48 treatment means for lactating cows (LAC database). A leave-one-out cross-validation of the derived models showed that a DMI-only predictor model had a similar root mean square prediction error as a percentage of the mean observed value (RMSPE, %) on the COM and LAC database of 14.7 and 14.1%, respectively, and it was the key predictor of CH4 production. All databases observed an improvement in prediction abilities in CH4 production with DMI in the models along with dietary forage proportion inclusion and the quadratic term of dietary forage proportion. For the COM database, the CH4 yield was best predicted by the dietary forage proportion only, while the LAC database was for dietary forage proportion, milk fat, and protein yields. The best newly developed models showed improved predictions of CH4 emission compared to other published equations. Our results indicate that the inclusion of dietary composition along with DMI can provide an improved CH4 production prediction in dairy cattle.

Funder

Dairy Management Inc.

Elanco Animal Health, Greenfield, IN

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference114 articles.

1. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. United Nations Economic Commission for Europe (UNECE) (2021). Best Practice Guidance for Effective Management of Coal Mine Methane at National Level: Monitoring, Reporting, Verification and Mitigation, United Nations. Available online: https://unece.org/info/publications/pub/363202.

3. Methane emissions from cattle;Johnson;J. Anim. Sci.,1995

4. Effect of ionophores on ruminal fermentation;Russell;Appl. Environ. Microbiol.,1989

5. Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B., and Steinfeld, H. (2013). Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment, Food and Agriculture Organization of the United Nations.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3