Application of AP-MALDI Imaging Mass Microscope for the Rapid Mapping of Imipramine, Chloroquine, and Their Metabolites in the Kidney and Brain of Wild-Type Mice

Author:

Islam ArifulORCID,Sakamoto Takumi,Zhai Qing,Rahman Md. Muedur,Mamun Md. Al,Takahashi Yutaka,Kahyo Tomoaki,Setou Mitsutoshi

Abstract

Mass spectrometry imaging (MSI) is well-known for the non-labeling visualization of analytes, including drugs and their metabolites in biological samples. In this study, we applied three different tools of MSI, desorption electrospray ionization (DESI)-MSI, matrix-assisted laser desorption ionization (MALDI)-MSI, and a newly developed atmospheric pressure (AP)-MALDI-MSI known as iMScopeTM QT for rapid mapping of imipramine, chloroquine, and their metabolites in C57BL/6 male wild-type mice. Among three MSI tools, better detection capability for targeted drugs at higher speed (up to 32 pixels/s) was observed in iMScope QT. It revealed that imipramine and its metabolites were significantly accumulated in the renal cortex of mice, but chloroquine and its metabolites were highly accumulated in the renal pelvis and renal medulla of mice. Additionally, a higher accumulation of imipramine was noted in the thalamus, hypothalamus, septum, and hindbrain of mice brains. However, chloroquine and its metabolites showed notable accumulation in the lateral ventricle, fourth ventricle, and fornix of the mice brains. These findings of our study can be helpful in understanding clinically relevant properties, efficacy, and potential side effects of these drugs. Our study also showed the potentiality of iMScope QT for rapid mapping of small drugs and their metabolites in biological samples.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

MEXT projects for promoting public utilization of advanced research infrastructure

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3