Mass Spectrometry Imaging Combined with Sparse Autoencoder Method Reveals Altered Phosphorylcholine Distribution in Imipramine Treated Wild-Type Mice Brains

Author:

Rahman Md Foyzur1ORCID,Islam Ariful1ORCID,Islam Md. Monirul1,Mamun Md. Al12ORCID,Xu Lili1ORCID,Sakamoto Takumi12,Sato Tomohito1ORCID,Takahashi Yutaka12,Kahyo Tomoaki13,Aoyagi Satoka4ORCID,Kaibuchi Kozo5,Setou Mitsutoshi16ORCID

Affiliation:

1. Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan

2. Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan

3. Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology/International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan

4. Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi 180-8633, Tokyo, Japan

5. Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan

6. International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan

Abstract

Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3