The Development of Sustainable Biocomposite Materials Based on Poly(lactic acid) and Silverskin, a Coffee Industry By-Product, for Food Packaging Applications

Author:

Petaloti Argyri-Ioanna1,Achilias Dimitris S.1ORCID

Affiliation:

1. Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Aligned with the principles of the circular economy and aiming at the production of environmentally friendly materials for food packaging applications, sustainable biocomposite films based on poly(lactic acid) (PLA) and coffee silverskin (SS), were developed. Coffee silverskin is a by-product of the coffee roasting process, while PLA is one of the most promising bio-based polymers. Several composites were prepared with different loadings of SS, ranging from 2.5 to 20 wt.%, via the solution casting method. The findings indicated that the effective dispersion of coffee silverskin in PLA was successfully accomplished and that a bleaching treatment of the filler leads to better interfacial interaction. The addition of silverskin, in any proportion, did not affect the melting point and glass transition temperature of the polymer matrix or the oxygen permeability of the film. Moreover, the degree of swelling was increased, more so for the films with modified particles, whereas the water vapor transmission rate and permeability increased only after the addition of high amounts (>10%) of surface-treated silverskin. A gradual decrease in color lightness was measured with the increasing concentration of silverskin, and the color was more intense in the untreated samples. The antioxidant activity of the films increased gradually with increasing additions of coffee silverskin due to the presence of compounds such as polyphenols. The chemical treatment of coffee silverskin resulted in the films having improved mechanical properties, as the chemical treatment facilitated stronger bonding between the base material and the additive. Therefore, sustainable composites with enhanced antioxidant activity can be produced by the incorporation of a food industry by-product into a PLA matrix.

Publisher

MDPI AG

Reference54 articles.

1. Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review;Garcia;J. Polym. Environ.,2021

2. Valorization of coffee wastes as plant growth promoter in mulching film production: A contribution to a circular economy;Pagliarini;Sci. Total Environ.,2023

3. Gustavsson, J., Cederberg, C., Sonesson, U., van Ottedijk, R., and Meybeck, A. (2011, January 12–18). Global food losses and food waste: Extent, causes and prevention. Proceedings of the Save Food, Interpack 2011, Düsseldorf, Germany.

4. Climate change and food systems;Vermeulen;Annu. Rev. Environ. Resour.,2012

5. Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A., Bikaki, M., Corvini, P., Ferri, M., and Tassoni, A. (2021). Monomers, materials and energy from coffee by-products: A review. Sustainability, 13.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3