Prediction of Shooting Events in Soccer Videos Using Complete Bipartite Graphs and Players’ Spatial-Temporal Relations

Author:

Goka Ryota1ORCID,Moroto Yuya1ORCID,Maeda Keisuke2ORCID,Ogawa Takahiro2ORCID,Haseyama Miki2ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan

2. Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan

Abstract

In soccer, quantitatively evaluating the performance of players and teams is essential to improve tactical coaching and players’ decision-making abilities. To achieve this, some methods use predicted probabilities of shoot event occurrences to quantify player performances, but conventional shoot prediction models have not performed well and have failed to consider the reliability of the event probability. This paper proposes a novel method that effectively utilizes players’ spatio-temporal relations and prediction uncertainty to predict shoot event occurrences with greater accuracy and robustness. Specifically, we represent players’ relations as a complete bipartite graph, which effectively incorporates soccer domain knowledge, and capture latent features by applying a graph convolutional recurrent neural network (GCRNN) to the constructed graph. Our model utilizes a Bayesian neural network to predict the probability of shoot event occurrence, considering spatio-temporal relations between players and prediction uncertainty. In our experiments, we confirmed that the proposed method outperformed several other methods in terms of prediction performance, and we found that considering players’ distances significantly affects the prediction accuracy.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Rating of Basketball Players' Competitive Performance Based on RBF-EVA Method;International Journal of Information Technology and Web Engineering;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3