The Rating of Basketball Players' Competitive Performance Based on RBF-EVA Method

Author:

Jia Jian1,Chen Hua2

Affiliation:

1. Shangqiu Engineering College, China

2. Jiangsu Vocational College of Medicine, China

Abstract

Basketball, as an offensive and defensive game centered around high altitude, has become an international mass competitive sport. Traditional methods cannot comprehensively evaluate the future potential of players, nor can they simply add up individual competitive abilities to judge the overall competitive performance of a team. To address these issues, this article proposes a video-based RBF neural network competitive scoring method, which analyzes players' past sports behavior, captures every subtle difference in their abilities, and achieves objective evaluation of players' competitive performance. Through comparative experiments, the accuracy of the test results is improved by about 5% compared to conventional RBF methods. This indicates that the improved RBF neural network designed in this article has significantly better prediction performance than traditional convolutional neural networks. This study provides a new method for evaluating the competitive performance of basketball players and has important guiding significance for basketball training and skill enhancement.

Publisher

IGI Global

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3