Research on Data Poisoning Attack against Smart Grid Cyber–Physical System Based on Edge Computing

Author:

Zhu Yanxu12ORCID,Wen Hong12ORCID,Zhao Runhui12,Jiang Yixin3,Liu Qiang12,Zhang Peng12

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

3. Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510663, China

Abstract

Data poisoning attack is a well-known attack against machine learning models, where malicious attackers contaminate the training data to manipulate critical models and predictive outcomes by masquerading as terminal devices. As this type of attack can be fatal to the operation of a smart grid, addressing data poisoning is of utmost importance. However, this attack requires solving an expensive two-level optimization problem, which can be challenging to implement in resource-constrained edge environments of the smart grid. To mitigate this issue, it is crucial to enhance efficiency and reduce the costs of the attack. This paper proposes an online data poisoning attack framework based on the online regression task model. The framework achieves the goal of manipulating the model by polluting the sample data stream that arrives at the cache incrementally. Furthermore, a point selection strategy based on sample loss is proposed in this framework. Compared to the traditional random point selection strategy, this strategy makes the attack more targeted, thereby enhancing the attack’s efficiency. Additionally, a batch-polluting strategy is proposed in this paper, which synchronously updates the poisoning points based on the direction of gradient ascent. This strategy reduces the number of iterations required for inner optimization and thus reduces the time overhead. Finally, multiple experiments are conducted to compare the proposed method with the baseline method, and the evaluation index of loss over time is proposed to demonstrate the effectiveness of the method. The results show that the proposed method outperforms the existing baseline method in both attack effectiveness and overhead.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference53 articles.

1. Paul, S., Gupta, S.D., Islam, K.A., Saha, K., and Majumder, S. (2012, January 28). Challenges of Securing the Smart Grid and Their Probable Security Solutions. Proceedings of the 2012 2nd International Conference on Environment and BioScience, Phnom Penh, Cambodia.

2. Edge computing enabled smart grid;Zhang;Big Data Res.,2019

3. Smart Grid Encounters Edge Computing: Opportunities and Applications;Feng;Adv. Appl. Energy,2020

4. Edge intelligence: Paving the last mile of artificial intelligence with edge computing;Zhou;Proc. IEEE,2019

5. Edge Computing: Vision and Challenges;Shi;IEEE IoT J.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3