Abstract
The filtered-x recursive least square (FxRLS) algorithm is widely used in the active noise control system and has achieved great success in some complex de-noising environments, such as the cabin in vehicles and aircraft. However, its performance is sensitive to some user-defined parameters such as the forgetting factor and initial gain. Once these parameters are not selected properly, the de-noising effect of FxRLS will deteriorate. Moreover, the tracking performance of FxRLS for mutation is still restricted to a certain extent. To solve the above problems, this paper proposes a new proportional FxRLS (PFxRLS) algorithm. The forgetting factor and initial gain sensitivity are successfully reduced without introducing new turning parameters. The de-noising level and tracking performance have also been improved. Moreover, the momentum technique is introduced in PFxRLS to further improve its robustness and de-noising level. To ensure stability, its convergence condition is also discussed in this paper. The effectiveness of the proposed algorithms is illustrated by simulations and experiments with different user-defined parameters and time-varying noise environments.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Active vibration hybrid control strategy based on multi-DOFs piezoelectric platform;Journal of Intelligent Material Systems and Structures;2023-12-29
2. Multichannel learning-based spatially extended active noise control via model matching and sensor transfer function interpolation;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31
3. A novel adaptive variable forgetting factor RLS algorithm;2022 International Conference on Informatics, Networking and Computing (ICINC);2022-10