Charge-Controlled Energy Optimization of the Reconstruction of Semiconductor Surfaces: sp3–sp2 Transformation of Stoichiometric GaN(0001) Surface to (4 × 4) Pattern

Author:

Strak Pawel1ORCID,Miller Wolfram2,Krukowski Stanislaw1ORCID

Affiliation:

1. Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland

2. Leibniz Institute for Crystal Growth (IKZ), Max-Born-Str. 2, D-12489 Berlin, Germany

Abstract

It was demonstrated by ab initio calculations that energy optimization in the reconstruction of semiconductor surfaces is controlled by the global charge balance. The charge control was discovered during simulations of the influence of heavy doping in the GaN bulk, which changes sp3 to sp2 ratio in the reconstruction of stoichiometric GaN(0001), i.e., a Ga-polar surface. Thus, the reconstruction is not limited to the charge in the surface only; it can be affected by the charge in the bulk. The discovered new reconstruction of the GaN(0001) surface is (4 × 4), which is different from the previously reported (2 × 1) pattern. The undoped GaN reconstruction is surface charge controlled; accordingly, (3/8) top-layer Ga atoms remain in a standard position with sp3 hybridized bonding, while the remaining (5/8) top-layer Ga atoms are shifted into the plane of N atoms with sp2 hybridized bonding. The change in the charge balance caused by doping in the bulk leads to a change or disappearance of the reconstruction pattern.

Funder

National Center for Research and Development (NCBR) of Poland

Interdisciplinary Center for Mathematical and Computational Modeling of Warsaw University

Polish high-performance computing infrastructure PLGrid

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Augmentation of the electron counting rule with Ising model;Journal of Applied Physics;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3