Improving GNSS PPP Convergence: The Case of Atmospheric-Constrained, Multi-GNSS PPP-AR

Author:

Aggrey John,Bisnath Sunil

Abstract

GNSS positioning performance has been shown to improve with the ingestion of data from Global Ionospheric Maps (GIMs) and tropospheric zenith path delays, which are produced by, e.g., the International GNSS Service (IGS). For both dual- and triple-frequency Precise Point Positioning (PPP) processing, the significance of GIM and tropospheric products in processing is not obvious in the quality of the solution after a few hours. However, constraining the atmosphere improves PPP initialization and solution convergence in the first few minutes of processing. The general research question to be answered is whether there is any significant benefit in constraining the atmosphere in multi-frequency PPP? A key related question is: regarding time and position accuracy, how close are we to RTK performance in the age of multi-GNSS PPP-AR? To address these questions, this paper provides insight into the conceptual analyses of atmospheric GNSS PPP constraints. Dual- and triple-frequency scenarios were investigated. Over 60% improvement in convergence time was observed when atmospheric constraints are applied to a dual-frequency multi-GNSS PPP-AR solution. Future work would involve employing the constraints to improve low-cost PPP solutions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Precise Point Positioning Using IGS Orbit and Clock Products

2. Precise point positioning for the efficient and robust analysis of GPS data from large networks

3. An Analysis of Multi-Frequency Carrier Phase Linear Combinations for GNSS;Urquhart,2009

4. An analytical study on the carrier-phase linear combinations for triple-frequency GNSS

5. Reliable integer ambiguity resolution with multi-frequency code carrier linear combinations;Henkel;J. Glob. Posit. Syst.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3