Abstract
Generally, strength and ductility are mutually exclusive in homogeneous metals. Nanostructured metals can have much higher strength when compared to their coarse-grained counterparts, while simple microstructure refinement to nanoscale generally results in poor strain hardening and limited ductility. In recent years, heterogeneous nanostructures in metals have been proven to be a new strategy to achieve unprecedented mechanical properties that are not accessible to their homogeneous counterparts. Here, we review recent advances in overcoming this strength–ductility trade-off by the designs of several heterogeneous nanostructures in metals: heterogeneous grain/lamellar/phase structures, gradient structure, nanotwinned structure and structure with nanoprecipitates. These structural heterogeneities can induce stress/strain partitioning between domains with dramatically different strengths, strain gradients and geometrically necessary dislocations near domain interfaces, and back-stress strengthening/hardening for high strength and large ductility. This review also provides the guideline for optimizing the mechanical properties in heterogeneous nanostructures by highlighting future challenges and opportunities.
Funder
National Natural Science Foundation of China
the Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
General Materials Science,Metals and Alloys
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献