Start-Up Strategy-Based Resilience Optimization of Onsite Monitoring Systems Containing Multifunctional Sensors

Author:

Zhao Jiangbin12,Zhang Zaoyan12,Liang Mengtao12,Cao Xiangang12,Cai Zhiqiang3ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China

3. Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

In nonrepairable multifunctional systems, the lost function of a component can be restored by the same function from another component; therefore, the activation mechanism of redundant functions illustrates that multifunctional systems have resilience features. This study evaluates the resilience of multifunctional systems and analyzes the properties of system resilience first. To determine the optimal start-up strategy, a resilience-oriented start-up strategy optimization model for onsite monitoring systems (OMSs) is established to maximize system resilience under a limited budget. In this study, real-time reliability is regarded as the system performance to evaluate the system resilience, and a two-stage local search based genetic algorithm (TLSGA) is proposed to solve the resilience optimization problem. The results of our numerical experiments show that the TLSGA can more effectively solve the problems for OMSs, with high function failure rates and low component failure rates compared with classical genetic algorithms under 48 systems. Moreover, the optimal combinations of unmanned aerial vehicles (UAVs) for an OMS under a limited budget shows that UAVs with a higher carrying capacity should be given priority for selection. Therefore, this study provides an effective solution for determining the optimal start-up strategy to maximize the resilience of OMSs, which is beneficial for OMS configuration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Outstanding Youth Science Fund of Xi’an University of Science and Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3