CAGNet: A Multi-Scale Convolutional Attention Method for Glass Detection Based on Transformer

Author:

Hu Xiaohang1,Gao Rui1ORCID,Yang Seungjun2,Cho Kyungeun3ORCID

Affiliation:

1. Department of Multimedia Engineering, Dongguk University, 30, Pildongro-1-gil, Jung-gu, Seoul 04620, Republic of Korea

2. Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

3. Division of AI Software Convergence, Dongguk University, 30, Pildongro-1-gil, Jung-gu, Seoul 04620, Republic of Korea

Abstract

Glass plays a vital role in several fields, making its accurate detection crucial. Proper detection prevents misjudgments, reduces noise from reflections, and ensures optimal performance in other computer vision tasks. However, the prevalent usage of glass in daily applications poses unique challenges for computer vision. This study introduces a novel convolutional attention glass segmentation network (CAGNet) predicated on a transformer architecture customized for image glass detection. Based on the foundation of our prior study, CAGNet minimizes the number of training cycles and iterations, resulting in enhanced performance and efficiency. CAGNet is built upon the strategic design and integration of two types of convolutional attention mechanisms coupled with a transformer head applied for comprehensive feature analysis and fusion. To further augment segmentation precision, the network incorporates a custom edge-weighting scheme to optimize glass detection within images. Comparative studies and rigorous testing demonstrate that CAGNet outperforms several leading methodologies in glass detection, exhibiting robustness across a diverse range of conditions. Specifically, the IOU metric improves by 0.26% compared to that in our previous study and presents a 0.92% enhancement over those of other state-of-the-art methods.

Funder

the Electronics and Telecommunications Research Institute

the Artificial Intelligence Convergence Innovation Human Resources Development

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PanoGlassNet: Glass Detection With Panoramic RGB and Intensity Images;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3