Reflective Noise Filtering of Large-Scale Point Cloud Using Transformer

Author:

Gao RuiORCID,Li Mengyu,Yang Seung-Jun,Cho KyungeunORCID

Abstract

Point clouds acquired with LiDAR are widely adopted in various fields, such as three-dimensional (3D) reconstruction, autonomous driving, and robotics. However, the high-density point cloud of large scenes captured with Lidar usually contains a large number of virtual points generated by the specular reflections of reflective materials, such as glass. When applying such large-scale high-density point clouds, reflection noise may have a significant impact on 3D reconstruction and other related techniques. In this study, we propose a method that uses deep learning and multi-position sensor comparison method to remove noise due to reflections from high-density point clouds in large scenes. The proposed method converts large-scale high-density point clouds into a range image and subsequently uses a deep learning method and multi-position sensor comparison method for noise detection. This alleviates the limitation of the deep learning networks, specifically their inability to handle large-scale high-density point clouds. The experimental results show that the proposed algorithm can effectively detect and remove noise due to reflection.

Funder

Electronics and Telecommunications Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3