Comparative Analysis of the Particle Swarm Optimization and Primal-Dual Interior-Point Algorithms for Transmission System Volt/VAR Optimization in Rectangular Voltage Coordinates

Author:

Mataifa Haltor1,Krishnamurthy Senthil1ORCID,Kriger Carl1

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology, Cape Town 7535, South Africa

Abstract

Optimal power flow (OPF) is one of the most widely studied problems in the field of operations research, as it applies to the optimal and efficient operation of the electric power system. Both the problem formulation and solution techniques have attracted significant research interest over the decades. A wide range of OPF problems have been formulated to cater for the various operational objectives of the power system and are mainly expressed either in polar or rectangular voltage coordinates. Many different solution techniques falling into the two main categories of classical/deterministic optimization and heuristic/non-deterministic optimization techniques have been explored in the literature. This study considers the Volt/VAR optimization (VVO) variant of the OPF problem formulated in rectangular voltage coordinates, which is something of a departure from the majority of the studies, which tend to use the polar coordinate formulation. The heuristic particle swarm optimization (PSO) and the classical primal-dual interior-point method (PDIPM) are applied to the solution of the VVO problem and a comparative analysis of the relative performance of the two algorithms for this problem is presented. Four case studies based on the 6-bus, IEEE 14-bus, 30-bus, and 118-bus test systems are presented. The comparative performance analysis reveals that the two algorithms have complementary strengths, when evaluated on the basis of the solution quality and computational efficiency. Particularly, the PSO algorithm achieves greater power loss minimization, whereas the PDIPM exhibits greater speed of convergence (and, thus, better computational efficiency) relative to the PSO algorithm, particularly for higher-dimensional problems. An additional distinguishing characteristic of the proposed solution is that it incorporates the Newton–Raphson load flow computation, also formulated in rectangular voltage coordinates, which adds to the efficiency and effectiveness of the presented solution method.

Funder

Deutscher Akademischer Austausch Dienst (DAAD)/National Research Foundation

Eskom Tertiary Education Support Programme

Eskom Power Plant Engineering Institute

SANEDI JET RFQ0622

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3