Modern Techniques for the Optimal Power Flow Problem: State of the Art

Author:

Risi Benedetto-Giuseppe,Riganti-Fulginei FrancescoORCID,Laudani AntoninoORCID

Abstract

Due to its significance in the operation of power systems, the optimal power flow (OPF) problem has attracted increasing interest with the introduction of smart grids. Optimal power flow developed as a crucial instrument for resource planning effectiveness as well as for enhancing the performance of electrical power networks. Transmission line losses, total generation costs, FACTS (flexible alternating current transmission system) costs, voltage deviations, total power transfer capability, voltage stability, emission of generation units, system security, etc., are just a few examples of objective functions related to the electric power system that can be optimized. Due to the nonlinear nature of optimal power flow problems, the classical approaches may become locked in local optimums, hence, metaheuristic optimization techniques are frequently used to solve these issues. The most recent optimization strategies used to solve optimal power flow problems are discussed in this paper as the state of the art (according to the authors, the most pertinent studies). The presented optimization techniques are grouped according to their sources of inspiration, including human-inspired algorithms (harmony search, teaching learning-based optimization, tabu search, etc.), evolutionary-inspired algorithms (differential evolution, genetic algorithms, etc.), and physics-inspired methods (particle swarm optimization, cuckoo search algorithm, firefly algorithm, ant colony optimization algorithm, etc.).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference89 articles.

1. Noncooperative Equilibrium-Seeking in Distributed Energy Systems Under AC Power Flow Nonlinear Constraints

2. An Optimal Power-Flow Approach to Improve Power System Voltage Stability Using Demand Response

3. Local Solutions of the Optimal Power Flow Problem

4. Load flow calculations in distribution systems with distributed resources. A review;Martinez;Proceedings of the 2011 IEEE Power and Energy Society General Meeting,2011

5. A Review on Optimal Power Flow Problems: Conventional and Metaheuristic Solutions;Charles;Proceedings of the 2nd International Conference on Smart Power & Internet Energy Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3