A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning

Author:

Ahmed Imran,Ahmad Misbah,Chehri AbdellahORCID,Jeon GwanggilORCID

Abstract

Machine-health-surveillance systems are gaining popularity in industrial manufacturing systems due to the widespread availability of low-cost devices, sensors, and internet connectivity. In this regard, artificial intelligence provides valuable assistance in the form of deep learning methods to analyze and process big machine data. In diverse industrial applications, gears are considered a condemning element; many contributing failures occur due to an unexpected breakdown of the gears. In recent research, anomaly-detection and fault-diagnosis systems have been the gears’ most contributing content. Thus, in work, we presented a smart deep learning-based system to detect anomalies in an industrial machine. Our system used vibrational analysis methods as a deciding tool for different machinery-maintenance decisions. We will first perform a data analysis of the gearbox data set to analyze the data’s insights. By calculating and examining the machine’s vibration, we aim to determine the nature and severity of the defect in the machine and hence detect the anomaly. A gearbox’s vibration signal holds the fault’s signature in the gears, and earlier fault detection of the gearbox is achievable by examining the vibration signal using a deep learning technique. Therefore, we aim to propose a 6-layer autoencoder-based deep learning framework for anomaly detection and fault analysis using a publically available data set of wind-turbine components. The gearbox fault-diagnosis data set is utilized for experimentation, including collecting vibration attributes recorded using SpectraQuest’s gearbox fault-diagnostics simulator. Through comprehensive experiments, we have seen that the framework gains good results compared to others, with an overall accuracy of 91%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference33 articles.

1. A particle-filtering approach for on-line fault diagnosis and failure prognosis;Orchard;Trans. Inst. Meas. Control,2009

2. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains;Wu;ISA Trans.,2020

3. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., and Varnier, C. (2012, January 18–21). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. Proceedings of the IEEE International Conference on Prognostics and Health Management, PHM’12, Denver, CO, USA. IEEE Catalog Number: CPF12PHM-CDR.

4. Person detector for different overhead views using machine learning;Ahmed;Int. J. Mach. Learn. Cybern.,2019

5. Energy Efficient Camera Solution for Video Surveillance;Ahmad;Int. J. Adv. Comput. Sci. Appl.,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3