Effect of the Blade-Coating Conditions on the Electrical and Optical Properties of Transparent Ag Nanowire Electrodes

Author:

Yoon Hyungsub,Matteini Paolo,Hwang Byungil

Abstract

Optimizing the coating conditions for a doctor blading system is important when seeking to improve the performance of Ag nanowire electrodes. In this study, the effect of the blading height and speed on the optical and electrical properties of Ag nanowire electrodes was investigated. Ag nanowires were first spread on a PET substrate using a doctor blade with differing heights at a fixed blading speed. An increase in the blading height resulted in the degradation of the optical transmittance and stronger haze due to the higher probability of Ag nanowire agglomeration arising from the greater wet thickness. When the blading speed was varied, the optical transmittance and haze were unaffected up until 20 mm/s, followed by minor degradation of the optical properties at blading speeds over 25 mm/s. The higher speeds hindered the spread of the Ag nanowire solution, which also increased the probability of Ag nanowire agglomeration. However, this degradation was less serious compared to that observed with a change in the blading height. Therefore, optimizing the blading height was confirmed to be the priority for the production of high-performance transparent Ag nanowire electrodes. Our study thus provides practical guidance for the fabrication of Ag nanowire electrodes using doctor blading systems.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3