Author:
Mousavi Seyed Mehdi, ,Rostami Mohammadreza Nademi,Yousefi Mohammad,Dinarvand Saeed, , ,
Abstract
In this analysis, the flow and heat transfer characteristics of an aqueous hybrid nanofluid with TiO2 and Cu as the nanoparticles past a horizontal slim needle in the presence of thermal radiation effect is investigated. We hope that the present research is applicable in fiber technology, polymer ejection, blood flow, etc. The Prandtl number of the base fluid is kept constant at 6.2. The needle is considered thin when its thickness does not exceed that of the boundary layer over it. Using the similarity transformation method, the governing PDEs are transformed to a set of non-linear ODEs. Then, the converted ODEs are numerically solved with help of bvp4c routine from MATLAB. Results indicate that the dual similarity solutions are obtained only when the slim needle moves in the opposite direction of the free stream. In addition, the first solutions are stable and physically realizable. Besides, the second nanoparticle's mass and also the magnetic parameter lead to decrease the range of the velocity ratio parameter for which the solution exists.
Publisher
Regional Association for Security and Crisis Management
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献