Flexible Capacitive Pressure Sensor Based on a Double-Sided Microstructure Porous Dielectric Layer

Author:

Yu QingyangORCID,Zhang Jian

Abstract

In the era of intelligent sensing, there is a huge demand for flexible pressure sensors. High sensitivity is the primary requirement for flexible pressure sensors, whereas pressure response range and resolution, which are also key parameters of sensors, are often ignored, resulting in limited applications of flexible pressure sensors. This paper reports a flexible capacitive pressure sensor based on a double-sided microstructure porous dielectric layer. First, a porous structure was developed in the polymer dielectric layer consisting of silicon rubber (SR)/NaCl/carbon black (CB) using the dissolution method, and then hemisphere microstructures were developed on both sides of the layer by adopting the template method. The synergistic effect of the hemispheric surface microstructure and porous internal structure improves the deformability of the dielectric layer, thus achieving high sensitivity (3.15 kPa−1), wide response range (0–200 kPa), and high resolution (i.e., the minimum pressure detected was 27 Pa). The proposed sensing unit and its array have been demonstrated to be effective in large-area pressure sensing and object recognition. The flexible capacitive pressure sensor developed in this paper is highly promising in applications of robot skin and intelligent prosthetic hands.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3