Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation

Author:

Skaltsounis Panagiotis,Kokkoris GeorgeORCID,Papaioannou Theodoros G.ORCID,Tserepi Angeliki

Abstract

Polymerase chain reaction (PCR) is the most common method used for nucleic acid (DNA) amplification. The development of PCR-performing microfluidic reactors (μPCRs) has been of major importance, due to their crucial role in pathogen detection applications in medical diagnostics. Closed loop (CL) is an advantageous type of μPCR, which uses a circular microchannel, thus allowing the DNA sample to pass consecutively through the different temperature zones, in order to accomplish a PCR cycle. CL μPCR offers the main advantages of the traditional continuous-flow μPCR, eliminating at the same time most of the disadvantages associated with the long serpentine microchannel. In this work, the performance of three different CL μPCRs designed for fabrication on a printed circuit board (PCB) was evaluated by a computational study in terms of the residence time in each thermal zone. A 3D heat transfer model was used to calculate the temperature distribution in the microreactor, and the residence times were extracted by this distribution. The results of the computational study suggest that for the best-performing microreactor design, a PCR of 30 cycles can be achieved in less than 3 min. Subsequently, a PCB chip was fabricated based on the design that performed best in the computational study. PCB constitutes a great substrate as it allows for integrated microheaters inside the chip, permitting at the same time low-cost, reliable, reproducible, and mass-amenable fabrication. The fabricated chip, which, at the time of this writing, is the first CL μPCR chip fabricated on a PCB, was tested by measuring the temperatures on its surface with a thermal camera. These results were then compared with the ones of the computational study, in order to evaluate the reliability of the latter. The comparison of the calculated temperatures with the measured values verifies the accuracy of the developed model of the microreactor. As a result of that, a total power consumption of 1.521 W was experimentally measured, only ~7.3% larger than the one calculated (1.417 W). Full validation of the realized CL μPCR chip will be demonstrated in future work.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3