Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics

Author:

Mejía-Salazar Jorge RicardoORCID,Rodrigues Cruz Kamilla,Materón Vásques Elsa María,Novais de Oliveira Jr. Osvaldo

Abstract

Point-of-care (PoC) diagnostics is promising for early detection of a number of diseases, including cancer, diabetes, and cardiovascular diseases, in addition to serving for monitoring health conditions. To be efficient and cost-effective, portable PoC devices are made with microfluidic technologies, with which laboratory analysis can be made with small-volume samples. Recent years have witnessed considerable progress in this area with “epidermal electronics”, including miniaturized wearable diagnosis devices. These wearable devices allow for continuous real-time transmission of biological data to the Internet for further processing and transformation into clinical knowledge. Other approaches include bluetooth and WiFi technology for data transmission from portable (non-wearable) diagnosis devices to cellphones or computers, and then to the Internet for communication with centralized healthcare structures. There are, however, considerable challenges to be faced before PoC devices become routine in the clinical practice. For instance, the implementation of this technology requires integration of detection components with other fluid regulatory elements at the microscale, where fluid-flow properties become increasingly controlled by viscous forces rather than inertial forces. Another challenge is to develop new materials for environmentally friendly, cheap, and portable microfluidic devices. In this review paper, we first revisit the progress made in the last few years and discuss trends and strategies for the fabrication of microfluidic devices. Then, we discuss the challenges in lab-on-a-chip biosensing devices, including colorimetric sensors coupled to smartphones, plasmonic sensors, and electronic tongues. The latter ones use statistical and big data analysis for proper classification. The increasing use of big data and artificial intelligence methods is then commented upon in the context of wearable and handled biosensing platforms for the Internet of things and futuristic healthcare systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3