In-Depth Understanding of Camellia oleifera Self-Incompatibility by Comparative Transcriptome, Proteome and Metabolome

Author:

Zhou Junqin,Lu Mengqi,Yu Shushu,Liu Yiyao,Yang Jin,Tan Xiaofeng

Abstract

Oil-tea tree (Camellia oleifera) is the most important edible oil tree species in China with late-acting self-incompatibility (LSI) properties. The mechanism of LSI is uncertain, which seriously hinders the research on its genetic characteristics, construction of genetic map, selection of cross breeding parents and cultivar arrangement. To gain insights into the LSI mechanism, we performed cytological, transcriptomic, proteomic and metabolomic studies on self- and cross-pollinated pistils. The studies identified 166,591 transcripts, 6851 proteins and 6455 metabolites. Transcriptomic analysis revealed 1197 differentially expressed transcripts between self- and cross-pollinated pistils and 47 programmed cell death (PCD)-control transcripts. Trend analysis by Pearson correlation categorized nine trend graphs linked to 226 differentially expressed proteins and 38 differentially expressed metabolites. Functional enrichment analysis revealed that the LSI was closely associated with PCD-related genes, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, ATP-binding cassette (ABC) transporters and ubiquitin-mediated proteolysis. These particular trends in transcripts, proteins and metabolites suggested the involvement of PCD in LSI. The results provide a solid genetic foundation for elucidating the regulatory network of PCD-mediated self-incompatibility in C. oleifera.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference100 articles.

1. Comprehensive Utilization of Tea-Oil Fruits, Tea-Oil Tree (Camellia oleifera Abel.) of China;Zhuang,2008

2. Investigation and prospect of bio-active components in vegetable oil;Xiao;Cereal Food Ind.,2006

3. Chemical constituents and biological activities of saponin from the seed of Camellia oleifera;Li;Sci. Res. Essays,2010

4. Species Selection Maintains Self-Incompatibility

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3