Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.)

Author:

Adhikari Pragya,Adhikari Tika B.,Louws Frank J.,Panthee Dilip R.

Abstract

Bacterial spot is a serious disease of tomato caused by at least four species of Xanthomonas. These include X. euvesicatoria (race T1), X. vesicatoria (race T2), X. perforans (races T3 and T4), and X. gardneri, with the distinct geographical distribution of each group. Currently, X. gardneri and X. perforans are two major bacterial pathogens of tomato in North America, with X. perforans (race T4) dominating in east-coast while X. gardneri dominating in the Midwest. The disease causes up to 66% yield loss. Management of this disease is challenging due to the lack of useful chemical control measures and commercial resistant cultivars. Although major genes for resistance (R) and quantitative resistance have been identified, breeding tomato for resistance to bacterial spot has been impeded by multiple factors including the emergence of new races of the pathogen that overcome the resistance, multigenic control of the resistance, linkage drag, non-additive components of the resistance and a low correlation between seedling assays and field resistance. Transgenic tomato with Bs2 and EFR genes was effective against multiple races of Xanthomonas. However, it has not been commercialized because of public concerns and complex regulatory processes. The genomics-assisted breeding, effectors-based genomics breeding, and genome editing technology could be novel approaches to achieve durable resistance to bacterial spot in tomato. The main goal of this paper is to understand the current status of bacterial spot of tomato including its distribution and pathogen diversity, challenges in disease management, disease resistance sources, resistance genetics and breeding, and future prospectives with novel breeding approaches.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3