Mechanical Properties of GaN Single Crystals upon C Ion Irradiation: Nanoindentation Analysis

Author:

Dong Zhaohui,Zhang Xiuyu,Peng Shengyuan,Jin Fan,Wan Qiang,Xue Jianming,Yi XinORCID

Abstract

Mechanical properties of gallium nitride (GaN) single crystals upon carbon ion irradiation are examined using nanoindentation analysis at room temperature. Pop-in events in the load-depth curves are observed for unirradiated and irradiated GaN samples. A statistical linear relationship between the critical indentation load for the occurrence of the pop-in event and the associated displacement jump is exhibited. Both the slope of linear regression and the measured hardness increase monotonically to the ion fluence, which can be described by logistic equations. Moreover, a linear relationship between the regression slope as a micromechanical characterization and the hardness as a macroscopic mechanical property is constructed. It is also found that the maximum resolved shear stress of the irradiated samples is larger than that of the unirradiated samples, as the dislocation loops are pinned by the irradiation-induced defects. Our results indicate that the nanoindentation pop-in phenomenon combined with a statistical analysis can serve as a characterization method for the mechanical properties of ion-irradiated materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3