Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment

Author:

Xiu Ziyang,Ju BoyuORCID,Zhan Junhai,Zhang Ningbo,Wang Zhijun,Mei Yong,Liu Jinming,Feng Yuhan,Guo Yixin,Kang Pengchao,Zhang Qiang,Yang WenshuORCID

Abstract

Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands.

Funder

Excellent Youth Scholars project of Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3