Analyzing the Validity of Brazilian Testing Using Digital Image Correlation and Numerical Simulation Techniques

Author:

Zhang HeORCID,Nath Fatick,Parrikar Prathmesh Naik,Mokhtari Mehdi

Abstract

Characterizing the mechanical behavior of rocks plays a crucial role to optimize the fracturing process in unconventional reservoirs. However, due to the intrinsic anisotropy and heterogeneity in unconventional resources, fracture process prediction remains the most significant challenge for sustainable and economic hydrocarbon production. During the deformation tracking under compression, deploying conventional methods (strain gauge, extensometer, etc.) is insufficient to measure the deformation since the physical attachment of the device is restricted to the size of the sample, monitoring limited point-wise deformation, producing difficulties in data retrieval, and a tendency to lose track in failure points, etc. Where conventional methods are limited, the application of digital image correlation (DIC) provides detailed and additional information of strain evolution and fracture patterns under loading. DIC is an image-based optical method that records an object with a camera and monitors the random contrast speckle pattern painted on the facing surface of the specimen. To overcome the existing limitations, this paper presents numerical modeling of Brazilian disc tests under quasi-static conditions to understand the full-field deformation behaviors and finally, it is validated by DIC. As the direct tensile test has limitations in sample preparation and test execution, the Brazilian testing principle is commonly used to evaluate indirectly the tensile strength of rocks. The two-dimensional numerical model was built to predict the stress distribution and full-field deformation on Brazilian disc under compression based on the assumptions of a homogenous, isotropic and linear elastic material. The uniaxial compression test was conducted using the DIC technique to determine the elastic properties of Spider Berea sandstone, which were used as inputs for the simulation model. The model was verified by the analytical solution and compared with the digital image correlation. The numerical simulation results showed that the solutions matched reasonably with the analytical solutions where the maximum deviation of stress distribution was obtained as 14.59%. The strain evolution (normal and shear strains) and displacements along the central horizontal and vertical planes were investigated in three distinguishable percentages of peak loads (20%, 40%, and 90%) to understand the deformation behaviors in rock. The simulation results demonstrated that the strain evolution contours consistently matched with DIC generated contours with a reasonable agreement. The changes in displacement along the central horizontal and vertical planes showed that numerical simulation and DIC generated experimental results were repeatable and matched closely. In terms of validation, Brazilian testing to measure the indirect tensile strength of rocks is still an issue of debate. The numerical model of fracture propagation supported by digital image correlation from this study can be used to explain the fracturing process in the homogeneous material and can be extended to non-homogeneous cases by incorporating heterogeneity, which is essential for rock mechanics field applications.

Funder

Louisiana Board of Regents

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3