Evaluation of a low-cost approach to 2-D digital image correlation vs. a commercial stereo-DIC system in Brazilian testing of soil specimens

Author:

Arza-García M.ORCID,Núñez-Temes C.,Lorenzana J. A.,Ortiz-Sanz J.,Castro A.,Portela-Barral M.,Gil-Docampo M.,Bastos G.

Abstract

AbstractDue to their cost, high-end commercial 3D-DIC (digital image correlation) systems are still inaccessible for many laboratories or small factories interested in lab testing materials. These professional systems can provide reliable and rapid full-field measurements that are essential in some laboratory tests with high-strain rate events or high dynamic loading. However, in many stress-controlled experiments, such as the Brazilian tensile strength (BTS) test of compacted soils, samples are usually large and fail within a timeframe of several minutes. In those cases, alternative low-cost methods could be successfully used instead of commercial systems. This paper proposes a methodology to apply 2D-DIC techniques using consumer-grade cameras and the open-source image processing software DICe (Sandia National Lab) for monitoring the standardized BTS test. Unlike most previous studies that theoretically estimate systematic errors or use local measures from strain gauges for accuracy assessment, we propose a contrast methodology with independent full-field measures. The displacement fields obtained with the low-cost system are benchmarked with the professional stereo-DIC system Aramis-3D (GOM GmbH) in four BTS experiments using compacted soil specimens. Both approaches proved to be valid tools for obtaining full-field measurements and showing the sequence of crack initiation, propagation and termination in the BTS, constituting reliable alternatives to traditional strain gauges. Mean deviations obtained between the low-cost 2D-DIC approach and Aramis-3D in measuring in-plane components were 0.08 mm in the perpendicular direction of loading (ΔX) and 0.06 mm in the loading direction (ΔY). The proposed low-cost approach implies considerable savings compared to commercial systems.

Funder

Strategic Researcher Cluster BioReDeS, Xunta de Galicia

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Agencia Estatal de Investigación

Universidade de Santiago de Compostela

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3