LSTM-NN Yaw Control of Wind Turbines Based on Upstream Wind Information

Author:

Chen Wenting,Liu Hang,Lin Yonggang,Li Wei,Sun Yong,Zhang Di

Abstract

Based on wind lidar, a novel yaw control scheme was designed that utilizes forecast wind information. The new scheme can reduce the power loss caused by the lag of accurate measurement data in the traditional yaw control strategy. A theoretical analysis of the power loss caused by the traditional wind measurement inherent error and the wind direction based traditional yaw control strategy was conducted. The yaw angle error and yaw stop/start frequency in an actual wind field were statistically analyzed, and a novel Long Short Term-Neural Network (LSTM-NN) yaw control strategy based on wind lidar information was proposed. An accurate forecast of the wind direction could reduce the power loss caused by the inherent yaw misalignment, while an accurate forecast of wind speed could increase the stop/start frequency in the medium speed section within the partial load range and reduce the frequency in the low speed section within the partial load range. Thus, the power captured could be increased by 3.5% under certain wind conditions without increasing the yaw duty. Based on a simple wind evolution model and a novel yaw control strategy, the validity of the yaw control strategy was verified in a FAST/Simulink simulation model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3