Stress Characteristics of Horizontal-Axis Wind Turbine Blades under Dynamic Yaw

Author:

Zhao Yuanxing1,Gong Xuan2,Wang Jianwen3,Zhang Liru3,Bai Yefei4

Affiliation:

1. College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. College of Electrical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

3. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

4. School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

The dynamic yaw significantly affects the aerodynamic load distribution of wind turbines, and the aerodynamic load is one of the main influencing factors of wind turbine structural stress variation. Taking the NACA4415 horizontal axis wind turbine designed by the research group as the research object, the numerical simulation was used to analyze the distribution characteristics of blade stress, surface thrust coefficient, and the wind turbine power output under periodic dynamic yaw conditions. The results show that the blade stress, blade axial thrust, and wind turbine output power were presented as a cosine distribution with yaw fluctuations. The distribution trend of blade stress showed an increase followed by a decrease from the inside out along the span direction. In addition, due to the influence of dynamic yaw and aerodynamic loads, the stress values near the blade root exhibited significant fluctuations. With the increase in tip speed ratio, the stress values of dynamic windward yaw gradually exceeded those of leeward yaw. Within the range of a 10° to 30° yaw variation period, the stress value with positive yaw was larger than that with negative yaw, and the highest stress value occurred in the range of −5° to 15°. The results can be provided as a theoretical basis for the structural design and yaw control strategies of wind turbines, considering dynamic yaw operation.

Funder

Inner Mongolia Agricultural University

Scientific Research Projection of Higher Schools of Inner Mongolia

Inner Mongolia Autonomous Region Natural Science Fund

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3