Development of Algorithms for Effective Resource Allocation among Highway–Rail Grade Crossings: A Case Study for the State of Florida

Author:

Kavoosi Masoud,Dulebenets Maxim A.ORCID,Pasha JunayedORCID,Abioye Olumide F.ORCID,Moses Ren,Sobanjo John,Ozguven Eren E.ORCID

Abstract

Smart cities directly rely on a variety of elements, including water, gas, electricity, buildings, services, transportation networks, and others. Lack of properly designed transportation networks may cause different economic and safety concerns. Highway–rail grade crossings are known to be a hazardous point in the transportation network, considering a remarkable number of accidents recorded annually between highway users and trains, and even solely between highway users at highway–rail grade crossings. Hence, safety improvement at highway–rail grade crossings is a challenging issue for smart city authorities, given limitations in monetary resources. In this study, two optimization models are developed for resource allocation among highway–rail grade crossings to minimize the overall hazard and the overall hazard severity, taking into account the available budget limitations. The optimization models are solved by CPLEX to the global optimality. Moreover, some heuristic algorithms are proposed as well. A case study focusing on the public highway–rail grade crossings in the State of Florida is performed to evaluate the effectiveness of the developed optimization models and the solution methodologies. In terms of the computational time, all the solution approaches are found to be effective decision support tools from the practical standpoint. Moreover, the results demonstrate that some of the developed heuristic algorithms can provide near-optimal solutions. Therefore, the smart city authorities can utilize the proposed heuristics as decision support tools for effective resource allocation among highway–rail grade crossings.

Funder

Florida Department of Transportation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3