Abstract
Liner shipping is a vital component of the world trade. Liner shipping companies usually operate fixed routes and announce their schedules. However, disruptions in sea and/or at ports affect the planned vessel schedules. Moreover, some liner shipping routes pass through the areas, designated by the International Maritime Organization (IMO) as emission control areas (ECAs). IMO imposes restrictions on the type of fuel that can be used by vessels within ECAs. The vessel schedule recovery problem becomes more complex when disruptions occur at such liner shipping routes, as liner shipping companies must comply with the IMO regulations. This study presents a novel mixed-integer nonlinear mathematical model for the green vessel schedule recovery problem, which considers two recovery strategies, including vessel sailing speed adjustment and port skipping. The objective aims to minimize the total profit loss, endured by a given liner shipping company due to disruptions in the planned operations. The nonlinear model is linearized and solved using CPLEX. A number of computational experiments are conducted for the liner shipping route, passing through ECAs. Important managerial insights reveal that the proposed methodology can assist liner shipping companies with efficient vessel schedule recovery, minimize the monetary losses due to disruptions in vessel schedules, and improve energy efficiency as well as environmental sustainability.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献